Chen X, Luo J, Leng Y, Yang Y, Zweifel LS, Palmiter RD, Storm DR.
Ablation of Type III Adenylyl Cyclase in Mice Causes Reduced Neuronal Activity, Altered Sleep Pattern, and Depression-like Phenotypes. Biological Psychiatry. 2016;80 :836-848.
AbstractBACKGROUND: Although major depressive disorder (MDD) has low heritability, a genome-wide association study in humans has recently implicated type 3 adenylyl cyclase (AC3; ADCY3) in MDD. Moreover, the expression level of AC3 in blood has been considered as a MDD biomarker in humans. Nevertheless, there is a lack of supporting evidence from animal studies. METHODS: We employed multiple approaches to experimentally evaluate if AC3 is a contributing factor for major depression using mouse models lacking the Adcy3 gene. RESULTS: We found that conventional AC3 knockout (KO) mice exhibited phenotypes associated with MDD in behavioral assays. Electroencephalography/electromyography recordings indicated that AC3 KO mice have altered sleep patterns characterized by increased percentage of rapid eye movement sleep. AC3 KO mice also exhibit neuronal atrophy. Furthermore, synaptic activity at cornu ammonis 3-cornu ammonis 1 synapses was significantly lower in AC3 KO mice, and they also exhibited attenuated long-term potentiation as well as deficits in spatial navigation. To confirm that these defects are not secondary responses to anosmia or developmental defects, we generated a conditional AC3 floxed mouse strain. This enabled us to inactivate AC3 function selectively in the forebrain and to inducibly ablate it in adult mice. Both AC3 forebrain-specific and AC3 inducible knockout mice exhibited prodepression phenotypes without anosmia. CONCLUSIONS: This study demonstrates that loss of AC3 in mice leads to decreased neuronal activity, altered sleep pattern, and depression-like behaviors, providing strong evidence supporting AC3 as a contributing factor for MDD.
Cao H, Chen X, Yang Y, Storm DR.
Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity. Integr Obes Diabetes. 2016;2 :225-228.
AbstractEvidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administration of AAV-CRE-GFP into the hypothalamus. Both male and female AC3 floxed mice showed heavier body weight than AAV-GFP injected control mice. Furthermore, mice with selective ablation of AC3 expression in the ventromedial hypothalamus also showed increased body weight and food consumption. Our results indicated that AC3 in the hypothalamus regulates energy balance.
Qiu L, LeBel RP, Storm DR, Chen X.
Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. Int J Physiol Pathophysiol Pharmacol. 2016;8 :95-108.
AbstractCilia are rigid, centriole-derived, microtubule-based organelles present in a majority of vertebrate cells including neurons. They are considered the cellular "antennae" attuned for detecting a range of extracellular signals including photons, odorants, morphogens, hormones and mechanical forces. The ciliary microenvironment is distinct from most actin-based subcellular structures such as microvilli or synapses. In the nervous system, there is no evidence that neuronal cilia process any synaptic structure. Apparently, the structural features of neuronal cilia do not allow them to harbor any synaptic connections. Nevertheless, a large number of G protein-coupled receptors (GPCRs) including odorant receptors, rhodopsin, Smoothened, and type 6 serotonin receptor are found in cilia, suggesting that these tiny processes largely depend on metabotropic receptors and their tuned signals to impact neuronal functions. The type 3 adenylyl cyclase (AC3), widely known as a cilia marker, is highly and predominantly expressed in olfactory sensory cilia and primary cilia throughout the brain. We discovered that ablation of AC3 in mice leads to pleiotropic phenotypes including anosmia, failure to detect mechanical stimulation of airflow, cognitive deficit, obesity, and depression-like behaviors. Multiple lines of human genetic evidence also demonstrate that AC3 is associated with obesity, major depressive disorder (MDD), sarcoidosis, and infertility, underscoring its functional importance. Here we review recent progress on AC3, a key enzyme mediating the cAMP signaling in neuronal cilia.