Yang J, Qiu L, Strobel M, Kabel A, Zha X, Chen X. Acid-Sensing Ion Channels Contribute to Type III Adenylyl Cyclase-Independent Acid-Sensing of Mouse Olfactory Sensory Neurons. Molecular Neurobiology. 2020;in press.
Zhou Y, Qiu L, Wang H, Chen X. Induction of activity synchronization among primed hippocampal neurons out of random dynamics is key for trace memory formation and retrieval. FASEB Journal [Internet]. 2020;34 (3) :3658. Publisher's Version
Sterpka A, Yang J, Strobel M, Zhou Y, Pauplis C, Chen X. Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Molecular Brain [Internet]. 2020;13 (1) :18. Publisher's Version
Zhang L, Chen X, C S, Lu S, Storm D, Zweifel L, Xia Z. Dynamics of a hippocampal neuronal ensemble encoding trace fear memory revealed by in vivo Ca2+ imaging. Plos One [Internet]. 2019;14 (7). Publisher's Version
Zhou Y, Qiu L, Wang H, Chu F, Chen X. Comparative Phosphoproteomic Profiling of Type 3 Adenylyl Cyclase Knockout and Control, Male and Female Mice. Frontiers in Cellular Neuroscience. [Internet]. 2019;13 (34). Publisher's Version
Sterpka A, Chen X. Neuronal and Astrocytic Primary Cilia in the Mature Brain. Pharmacological Research [Internet]. 2018;137 :114-121. Publisher's Version
Chen X, Luo J, Leng Y, Yang Y, Zweifel LS, Palmiter RD, Storm DR. Ablation of Type III Adenylyl Cyclase in Mice Causes Reduced Neuronal Activity, Altered Sleep Pattern, and Depression-like Phenotypes. Biological Psychiatry. 2016;80 :836-848.Abstract
BACKGROUND: Although major depressive disorder (MDD) has low heritability, a genome-wide association study in humans has recently implicated type 3 adenylyl cyclase (AC3; ADCY3) in MDD. Moreover, the expression level of AC3 in blood has been considered as a MDD biomarker in humans. Nevertheless, there is a lack of supporting evidence from animal studies. METHODS: We employed multiple approaches to experimentally evaluate if AC3 is a contributing factor for major depression using mouse models lacking the Adcy3 gene. RESULTS: We found that conventional AC3 knockout (KO) mice exhibited phenotypes associated with MDD in behavioral assays. Electroencephalography/electromyography recordings indicated that AC3 KO mice have altered sleep patterns characterized by increased percentage of rapid eye movement sleep. AC3 KO mice also exhibit neuronal atrophy. Furthermore, synaptic activity at cornu ammonis 3-cornu ammonis 1 synapses was significantly lower in AC3 KO mice, and they also exhibited attenuated long-term potentiation as well as deficits in spatial navigation. To confirm that these defects are not secondary responses to anosmia or developmental defects, we generated a conditional AC3 floxed mouse strain. This enabled us to inactivate AC3 function selectively in the forebrain and to inducibly ablate it in adult mice. Both AC3 forebrain-specific and AC3 inducible knockout mice exhibited prodepression phenotypes without anosmia. CONCLUSIONS: This study demonstrates that loss of AC3 in mice leads to decreased neuronal activity, altered sleep pattern, and depression-like behaviors, providing strong evidence supporting AC3 as a contributing factor for MDD.
Cao H, Chen X, Yang Y, Storm DR. Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity. Integr Obes Diabetes. 2016;2 :225-228.Abstract
Evidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administration of AAV-CRE-GFP into the hypothalamus. Both male and female AC3 floxed mice showed heavier body weight than AAV-GFP injected control mice. Furthermore, mice with selective ablation of AC3 expression in the ventromedial hypothalamus also showed increased body weight and food consumption. Our results indicated that AC3 in the hypothalamus regulates energy balance.
Qiu L, LeBel RP, Storm DR, Chen X. Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. Int J Physiol Pathophysiol Pharmacol. 2016;8 :95-108.Abstract
Cilia are rigid, centriole-derived, microtubule-based organelles present in a majority of vertebrate cells including neurons. They are considered the cellular "antennae" attuned for detecting a range of extracellular signals including photons, odorants, morphogens, hormones and mechanical forces. The ciliary microenvironment is distinct from most actin-based subcellular structures such as microvilli or synapses. In the nervous system, there is no evidence that neuronal cilia process any synaptic structure. Apparently, the structural features of neuronal cilia do not allow them to harbor any synaptic connections. Nevertheless, a large number of G protein-coupled receptors (GPCRs) including odorant receptors, rhodopsin, Smoothened, and type 6 serotonin receptor are found in cilia, suggesting that these tiny processes largely depend on metabotropic receptors and their tuned signals to impact neuronal functions. The type 3 adenylyl cyclase (AC3), widely known as a cilia marker, is highly and predominantly expressed in olfactory sensory cilia and primary cilia throughout the brain. We discovered that ablation of AC3 in mice leads to pleiotropic phenotypes including anosmia, failure to detect mechanical stimulation of airflow, cognitive deficit, obesity, and depression-like behaviors. Multiple lines of human genetic evidence also demonstrate that AC3 is associated with obesity, major depressive disorder (MDD), sarcoidosis, and infertility, underscoring its functional importance. Here we review recent progress on AC3, a key enzyme mediating the cAMP signaling in neuronal cilia.
Challis RC, Tian H, Wang J, He J, Jiang J, Chen X, Yin W, Connelly T, Ma L, Yu CR, et al. An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors. Curr Biol. 2015;25 :2503-12.Abstract
In many sensory organs, specialized receptors are strategically arranged to enhance detection sensitivity and acuity. It is unclear whether the olfactory system utilizes a similar organizational scheme to facilitate odor detection. Curiously, olfactory sensory neurons (OSNs) in the mouse nose are differentially stimulated depending on the cell location. We therefore asked whether OSNs in different locations evolve unique structural and/or functional features to optimize odor detection and discrimination. Using immunohistochemistry, computational fluid dynamics modeling, and patch clamp recording, we discovered that OSNs situated in highly stimulated regions have much longer cilia and are more sensitive to odorants than those in weakly stimulated regions. Surprisingly, reduction in neuronal excitability or ablation of the olfactory G protein in OSNs does not alter the cilia length pattern, indicating that neither spontaneous nor odor-evoked activity is required for its establishment. Furthermore, the pattern is evident at birth, maintained into adulthood, and restored following pharmacologically induced degeneration of the olfactory epithelium, suggesting that it is intrinsically programmed. Intriguingly, type III adenylyl cyclase (ACIII), a key protein in olfactory signal transduction and ubiquitous marker for primary cilia, exhibits location-dependent gene expression levels, and genetic ablation of ACIII dramatically alters the cilia pattern. These findings reveal an intrinsically programmed configuration in the nose to ensure high sensitivity to odors.
Chen X, Cao H, Saraf A, Zweifel LS, Storm DR. Overexpression of the type 1 adenylyl cyclase in the forebrain leads to deficits of behavioral inhibition. J Neurosci. 2015;35 :339-51.Abstract
The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition.
Luo J, Chen X, Pan YW, Lu S, Xia Z, Storm DR. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb. PLoS One. 2015;10 :e0122057.Abstract
The type 3 adenylyl cyclase (AC3) is localized to olfactory cilia in the main olfactory epithelium (MOE) and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN) targeting, its role in granule cells (GCs), the most abundant interneurons in the main olfactory bulb (MOB), remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ), however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.
Wardlaw SM, Phan TX, Saraf A, Chen X, Storm DR. Genetic disruption of the core circadian clock impairs hippocampus-dependent memory. Learn Mem. 2014;21 :417-23.Abstract
Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1-/- mice, which are arrhythmic under constant conditions, were examined for hippocampus-dependent memory, LTP at the Schaffer-collateral synapse, and signal transduction activity in the hippocampus. Bmal1-/- mice exhibit impaired contextual fear and spatial memory. Furthermore, LTP in hippocampal slices from Bmal1-/- mice is also significantly decreased relative to that from wild-type mice. Activation of Erk1,2 MAP kinase (MAPK) during training for contextual fear memory and diurnal oscillation of MAPK activity and cAMP in the hippocampus is also lost in Bmal1-/- mice, suggesting that the memory defects are due to reduction of the memory consolidation pathway in the hippocampus. We conclude that critical signaling events in the hippocampus required for memory depend on BMAL1.
Chen X, Xia Z, Storm DR. Electroolfactogram (EOG) Recording in the Mouse Main Olfactory Epithelium. Bio Protoc. 2013;3.Abstract
Olfactory sensory neurons in the main olfactory epithelium (MOE) are responsible for detecting odorants and EOG recording is a reliable approach to analyze the peripheral olfactory function. However, recently we revealed that rodent MOE can also detect the air pressure caused by airflow. The sensation of airflow pressure and odorants may function in synergy to facilitate odorant perception during sniffing. We have reported that the pressure-sensitive response in the MOE can also be assayed by EOG recording. Here we describe procedures for pressure-sensitive as well as odorant-stimulated EOG measurement in the mouse MOE. The major difference between the pressure-sensitive EOG response and the odorant-stimulated response was whether to use pure air puff or use an odorized air puff.
Xiang YY, Chen X, Li J, Wang S, Faclier G, Macdonald JF, Hogg JC, Orser BA, Lu WY. Isoflurane regulates atypical type-A gamma-aminobutyric acid receptors in alveolar type II epithelial cells. Anesthesiology. 2013;118 :1065-75.Abstract
BACKGROUND: Volatile anesthetics act primarily through upregulating the activity of gamma-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. METHODS: The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. RESULTS: ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 microM. Isoflurane (0.1-250 microM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 microM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. CONCLUSIONS: GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.
Chen X, Xia Z, Storm DR. Stimulation of electro-olfactogram responses in the main olfactory epithelia by airflow depends on the type 3 adenylyl cyclase. J Neurosci. 2012;32 :15769-78.Abstract
Cilia of olfactory sensory neurons are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3(-/-) mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing.
Chen X, Li M, Xiong ZG, Orser BA, Macdonald JF, Lu WY. An anti-coagulation agent Futhan preferentially targets GABA(A) receptors in lungepithelia: implication in treating asthma. Int J Physiol Pathophysiol Pharmacol. 2011;3 :249-56.Abstract
Futhan is a serine protease inhibitor and medicine in the treatment of disseminated intravascular coagulation (DIC) and acute pancreatitis. It is metabolized quickly in vivo. Here we show that Futhan reversibly inhibits NMDA receptors in hippocampal neurons and GABA(A) receptors both in hippocampal neurons and in A549 cells, a human alveolar epithelial cell line. The effect of Futhan on GABA(A) receptors in A549 cells is much more potent than its effect on GABA(A) receptors in hippocampal neurons (IC(50): 0.9 muM V.S. 7.3 muM). Since GABA(A) receptors are also expressed in various non-neuronal tissues, particularly in airway epithelia and GABA promotes mucus production during asthma, our findings indicate that Futhan may be developed as a novel aerosolized therapeutic to treat asthma through blocking GABA(A) receptors in the lung.
Chen X, Whissell P, Orser BA, Macdonald JF. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels. PLoS One. 2011;6 :e21970.Abstract
Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABA(A) receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A) receptor-mediated currents. Moreover, activation of the GABA(A) receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A) receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A) receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A) receptors, also modified ASICs in spinal neurons. We conclude that GABA(A) receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.
Chen X, Orser BA, Macdonald JF. Design and screening of ASIC inhibitors based on aromatic diamidines for combating neurological disorders. Eur J Pharmacol. 2010;648 :15-23.Abstract
Acid sensing ion channels (ASICs) are implicated in various brain functions including learning and memory and are involved in a number of neurological disorders such as pain, ischemic stroke, depression, and multiple sclerosis. We have recently defined ASICs as one of receptor targets of aromatic diamidines in neurons. Aromatic diamidines are DNA-binding agents and have long been used in the treatment of leishmaniasis, trypanosomiasis, pneumocystis pneumonia and babesiosis. Moreover, some aromatic diamidines are used as skin-care and baby products and others have potential to suppress tumor growth or to combat malaria. A large number of aromatic diamidines or analogs have been synthesized. Many efforts are being made to optimize the therapeutic spectrum of aromatic diamidines, i.e. to reduce toxicity, increase oral bioavailability and enhance their penetration of the blood-brain barrier. Aromatic diamidines therefore provide a shortcut of screening for selective ASIC inhibitors with therapeutic potential. Intriguingly nafamostat, a protease inhibitor for treating acute pancreatitis, also inhibits ASIC activities. Aromatic diamidines and nafamostat have many similarities although they belong to distinct classes of medicinal agents for curing different diseases. Here we delineate background, clinical application and drug development of aromatic diamidines that could facilitate the screening for selective ASIC inhibitors for research purposes. Further studies may lead to a drug with therapeutic value and extend the therapeutic scope of aromatic diamidines to combat neurological diseases.
Chen X, Qiu L, Li M, Durrnagel S, Orser BA, Xiong ZG, Macdonald JF. Diarylamidines: high potency inhibitors of acid-sensing ion channels. Neuropharmacology. 2010;58 :1045-53.Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that are predominantly expressed in the nervous system. ASICs are involved in a number of neurological diseases such as pain, ischemic stroke and multiple sclerosis but limited tools are available to target these channels and provide probes for their physiological functions. Here we report that the anti-protozoal diarylamidines, 4',6-diamidino-2-phenylindole (DAPI), diminazene, hydroxystilbamidine (HSB) and pentamidine potently inhibit ASIC currents in primary cultured hippocampal neurons with apparent affinities of 2.8 microM, 0.3 microM, 1.5 microM and 38 microM, respectively. These four compounds (100 microM) failed to block ENaC channels expressed in oocytes. Sub-maximal concentrations of diminazene also strongly accelerated desensitization of ASIC currents in hippocampal neurons. Diminazene blocked ASIC1a, -1b -2a, and -3 currents expressed in CHO cells with a rank order of potency 1b > 3 > 2a >or= 1a. Patchdock computational analysis suggested a binding site of diarylamidines on ASICs. This study indicates diarylamidines constitute a novel class of non-amiloride ASIC blockers and suggests that diarylamidines may be developed as therapeutic agents in treatment of ASIC-involved diseases.