Garnas JR, Vann K, Hurley BP.
Biotic and abiotic effects on density, body size, sex ratio, and survival in immature stages of the European woodwasp, Sirex noctilio. Ecology and Evolution [Internet]. 2020.
Publisher's VersionAbstractResource quality can have direct or indirect effects on female oviposition choice, offspring growth and survival, and ultimately on body size and sex ratio. We examined these patterns in Sirex noctilio Fabricus, the globally invasive European pine woodwasp, in South African Pinus patula plantations. We studied how tree position as well as natural variation in biotic and abiotic factors influenced sex-specific density, larval size, tunnel length, male proportion, and survival across development. Twenty infested trees divided into top, middle, and bottom sections were sampled at three time points during larval development. We measured moisture content, bluestain fungal colonization, and co-occurring insect density and counted, measured, and sexed all immature wasps. A subset of larval tunnels was measured to assess tunnel length and resource use efficiency (tunnel length as a function of immature wasp size). Wasp density increased from the bottoms to the tops of trees for both males and females. However, the largest individuals and the longest tunnels were found in bottom sections. Male bias was strong (~10:1) and likewise differed among sections, with the highest proportion in the middle and top sections. Sex ratios became more strongly male biased due to high female mortality, especially in top and middle sections. Biotic and abiotic factors such as colonization by Diplodia sapinea, weevil (Pissodes sp.) density, and wood moisture explained modest residual variation in our primary mixed effects models (0%–22%). These findings contribute to a more comprehensive understanding of sex-specific resource quality for S. noctilio and of how variation in key biotic and abiotic factors can influence body size, sex ratio, and survival in this economically important woodwasp.
garnas-2020-biotic_and_abiotic_effects_on_dens.pdf Stauder CM, Garnas JR, Morrison EW, Salgado-Salazar C, Kasson MT.
Characterization of mating type genes in heterothallic Neonectria species with emphasis on N. coccinea, N. ditissima, and N. faginata. Mycologia [Internet]. 2020;112 (5) :880-894.
10.1080/00275514.2020.1797371AbstractNeonectria ditissima and N. faginata are canker pathogens involved in an insect-fungus disease complex of American beech (Fagus grandifolia) commonly known as beech bark disease (BBD). In Europe, both N. ditissima and N. coccinea are involved in BBD on European beech (Fagus sylvatica). Field observations across the range of BBD indicate that new infections occur primarily via ascospores. Both heterothallic (self-sterile) and homothallic (self-fertile) mating strategies have been reported for Neonectria fungi. As such, investigations into mating strategy are important for understanding both the disease cycle and population genetics of Neonectria. This is particularly important in the U.S. given that over time N. faginata dominates the BBD pathosystem despite high densities of non-beech hosts for N. ditissima. This study utilized whole-genome sequences of BBD-associated Neonectria spp. along with other publicly available Neonectria and Corinectria genomes and in vitro mating assays to characterize mating type (MAT) loci and confirm thallism for select members of Neonectria and Corinectria. MAT gene-specific primer pairs were developed to efficiently characterize the mating types of additional single ascospore strains of N. ditissima, N. faginata, and N. coccinea and several other related species lacking genomic data. In vitro mating assays were used in combination with molecular results to confirm thallism. These assays also comfirmed the sexual compatibility among N. ditissima strains from different plant hosts. Maximum likelihood phylogenetic analysis of both MAT1-1-1 and MAT1-2-1 sequences recovered trees with similar topology to previously published phylogenies of Neonectria and Corinectria. The results of this study indicate that all Neonectria and Corinectria tested are heterothallic based on our limited sampling and, as such, thallism cannot help explain the inevitable dominance of N. faginata in the BBD pathosystem.
Mutitu EK, Hoareau TB, Hurley BP, Garnas JR, Wingfield MJ, Slippers B.
Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): cities as bridgeheads for global pest invasions. Biological Invasions. 2020.
AbstractInsect pest invasions pose a major threat to agriculture, forestry and many natural ecosystems. Thaumastocoris peregrinus is an invasive sap-sucking pest of significant economic importance to Eucalyptus forestry that has recently invaded several countries worldwide. In this study we identify the origin and retrace the invasion history of T. peregrinus. We analysed samples from six locations in Africa, South America and Australia using microsatellites markers and a combination of clustering methods and scenario testing using Approximate Bayesian Clustering. We detected clear genetic substructure differentiating African and South American samples, with representatives of both present in Australia. The Australian population from New South Wales showed substantially higher genetic diversity than the Queensland source, which could indicate that this region could be part of the core range and evolutionary origin of the species. Africa and South America were colonised by independent introductions that occurred more or less concurrently. The study illustrates the impact of the bridgehead effect on global invasions following an outbreak or ‘invasion’ within a city in the native range of the insect.