Nolen HB, Smith C, Davis TM, A. P.
Evaluation of disease severity and molecular relationships among Peronospora variabilis isolates on Chenopodium species in New Hampshire. Plant Disease. 2022;106 (2) :564-571.
AbstractQuinoa is a potential new crop for New England; however, its susceptibility to downy mildew, caused by Peronospora variabilis, is a key obstacle for cultivation. The objectives of this study were to evaluate differential resistance within the Chenopodium genus, identify novel sources of resistance for use in future genetic studies or breeding programs, and investigate phylogenetic relationships of P. variabilis isolates from different Chenopodium hosts. The long-term goal of this research is to develop a resistant variety of quinoa to be grown in New England. Field trials conducted at the University of New Hampshire evaluated downy mildew disease severity on 10 Chenopodium accessions representing four species. Disease severity for each treatment was compared and significant differences in disease severity were observed between accessions. C. berlandieri var. macrocalycium ecotypes collected from Rye Beach, New Hampshire and Appledore Island, Maine exhibited the lowest disease severity over the growing season. P. variabilis was isolated from each accession, and COX2 sequences were compared. Phylogenetic analyses suggest no effect of host species on P. variabilis sequence similarity; however, isolates are shown to cluster by geographic location. This research provides the first step in identifying potential New England native sources of resistance to downy mildew within the genus Chenopodium and provides preliminary information needed to further investigate resistance at the genomic level in Chenopodium spp.
Frailey DC, Zhang Q, Wood DJ, Davis TM.
Defining the mutation sites in chickpea nodulation mutants PM233 and PM405.
BMC Plant Biology. 2022;22 (66) :1-12.
AbstractBackground: Like most legumes, chickpeas form specialized organs called root nodules. These nodules allow for a symbiotic relationship with rhizobium bacteria. The rhizobia provide fixed atmospheric nitrogen to the plant in a usable form. It is of both basic and practical interest to understand the host plant genetics of legume root nodulation. Chickpea lines PM233 and PM405, which harbor the mutationally identified nodulation genes rn1 and rn4, respectively, both display nodulation-deficient phenotypes. Previous investigators identified the rn1 mutation with the chickpea homolog of Medicago truncatula nodulation gene NSP2, but were unable to define the mutant rn1 allele. We used Illumina and Nanopore sequencing reads to attempt to identify and characterize candidate mutation sites responsible for the PM233 and PM405 phenotypes. Results: We aligned Illumina reads to the available desi chickpea reference genome, and did a de novo contig assembly of Nanopore reads. In mutant PM233, the Nanopore contigs allowed us to identify the breakpoints of a ~ 35 kb deleted region containing the CaNSP2 gene, the Medicago truncatula homolog of which is involved in nodulation. In mutant PM405, we performed variant calling in read alignments and identified 10 candidate mutations. Genotyping of a segregating progeny population narrowed that pool down to a single candidate gene which displayed homology to M. truncatula nodulation gene NIN. Conclusions: We have characterized the nodulation mutation sites in chickpea mutants PM233 and PM405. In mutant PM233, the rn1 mutation was shown to be due to deletion of the entire CaNSP2 nodulation gene, while in mutant PM405 the rn4 mutation was due to a single base deletion resulting in a frameshift mutation between the predicted RWP-RK and PB1 domains of the NIN nodulation gene. Critical to characterization of the rn1 allele was the generation of Nanopore contigs for mutant PM233 and its wild type parent ICC 640, without which the deletional boundaries could not be defined. Our results suggest that efforts of prior investigators were hampered by genomic misassemblies in the CaNSP2 region of both the desi and kabuli reference genomes.